
Global-Position Tracking Control of 3-D Bipedal
Walking via Virtual Constraint Design and

Multiple Lyapunov Analysis

Yan Gu ∗
Department of Mechanical Engineering

University of Masachusetts Lowell
Lowell, MA 01854, U.S.A.
Email: yan gu@uml.edu

Yuan Gao
Department of Mechanical Engineering

University of Masachusetts Lowell
Lowell, MA 01854, U.S.A.

Email: yuan gao@student.uml.edu

Bin Yao
School of Mechanical Engineering

Purdue University
West Lafayette, IN 47907, U.S.A.

Email: byao@purdue.edu

C. S. George Lee
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907, U.S.A.

Email: csglee@purdue.edu

A safety-critical measure of legged locomotion performance1

is a robot’s ability to track its desired time-varying posi-2

tion trajectory in an environment, which is herein termed as3

“global-position tracking”. This paper introduces a nonlinear4

control approach that achieves asymptotic global-position5

tracking for three-dimensional (3-D) bipedal robot walking.6

Designing a global-position tracking controller presents a7

challenging problem due to the complex hybrid robot model8

and the time-varying desired global-position trajectory. To-9

wards tackling this problem, the first main contribution is10

the construction of impact invariance to ensure all desired11

trajectories respect the foot-landing impact dynamics, which12

is a necessary condition for realizing asymptotic tracking13

of hybrid walking systems. Thanks to their independence14

of the desired global position, these conditions can be ex-15

ploited to decouple the higher-level planning of the global16

position and the lower-level planning of the remaining tra-17

jectories, thereby greatly alleviating the computational bur-18

den of motion planning. The second main contribution is the19

Lyapunov-based stability analysis of the hybrid closed-loop20

system, which produces sufficient conditions to guide the21

controller design for achieving asymptotic global-position22

∗Corresponding Author. This material is based upon work supported by
the National Science Foundation under Grant No. CMMI-1934280. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

tracking during fully actuated walking. Simulations and ex- 23

periments on a 3-D bipedal robot with twenty revolute joints 24

confirm the validity of the proposed control approach in 25

guaranteeing accurate tracking. 26

1 Introduction 27

A robot’s global position represents its absolute position 28

in an environment. Poor global-position tracking can poten- 29

tially put the safety of both humans and robots at risk, for 30

example, by causing robots’ failure to avoid pedestrians in 31

human-populated environments. To achieve accurate global- 32

position tracking, the Zero-Moment-Point (ZMP) control ap- 33

proach has been introduced based on the ZMP balance cri- 34

terion and the continuous-time dynamic model of bipedal 35

walking [1–3]. Yet, bipedal walking is inherently a hy- 36

brid process involving both continuous motions (e.g., foot 37

swinging) and discrete impact dynamics (e.g., sudden joint- 38

velocity jumps upon a foot landing) [4–7]. Achieving re- 39

liable global-position tracking by explicitly addressing the 40

hybrid robot dynamics presents substantial challenges. 41

This study focuses on addressing the challenges associ- 42

ated with: a) lower-level trajectory generation (i.e., Level 2 43

in Fig. 1) and b) controller design (i.e., Level 3 in Fig. 1). It 44

is assumed that the desired global path and the desired time- 45

varying position trajectory along the path have both been 46

provided by a higher-level planner (i.e., Level 1 in Fig. 1) 47
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Fig. 1. Overview of the proposed control approach. This study focuses on impact invariance construction in Level 2 and stability analysis
and controller design in Level 3.

without impact dynamics considered.48

A key challenge in the lower-level trajectory generation49

(i.e., Level 2 in Fig. 1) is to reduce the computational bur-50

den caused by enforcing the impact dynamics on the desired51

trajectories. For the controller to achieve asymptotic track-52

ing based on a hybrid robot model, the desired trajectories53

need to agree with the impact dynamics; i.e., their pre- and54

post-impact values should satisfy the impact map. This is be-55

cause the impact dynamics cannot be directly controlled due56

to their infinitesimally short duration [8–11]. Yet, the com-57

putational burden caused by respecting the impact dynamics58

is heavy because of the high dimension of a legged robot’s59

state space and the nonlinearity of the impact dynamics.60

Another challenge is the closed-loop stability analy-61

sis of the hybrid dynamical system that produces sufficient62

conditions to inform the controller derivation (i.e., Level 363

in Fig. 1). Such a stability analysis is complex because64

a closed-loop system capable of stabilizing a time-varying65

global-position trajectory is hybrid, nonlinear, and time-66

varying with uncontrolled, state-triggered impact dynamics.67

1.1 Related Work on Orbitally Stabilizing Control68

The most widely studied control approach that explicitly69

addresses the hybrid walking dynamics is the Hybrid Zero70

Dynamics (HZD) method [12–17]. The HZD method prov-71

ably stabilizes dynamic walking motions through orbital sta-72

bilization of the hybrid closed-loop control system. It has73

realized remarkable performance for various gait types such74

as periodic underactuated [18, 19], fully actuated [20], and75

multi-domain walking [21].76

The HZD framework introduces virtual constraints to77

represent the evolution of a robot’s desired configuration78

with respect to a phase variable that indicates how far a step79

has progressed. To enforce the impact dynamics on the de-80

sired gait, the HZD approach introduces a method termed81

“impact invariance construction” to produce an equality con-82

straint under which the desired gait respects the impact dy-83

namics, and incorporates the constraint in the optimization-84

based generation of virtual constraints. Yet, because the en-85

coding of the global-position trajectory is inherently differ-86

ent from that of virtual constraints, the previous impact in-87

variance construction cannot be directly applied or extended88

to ensure the agreement with impact dynamics for the de-89

sired global-position trajectory. Specifically, the virtual con- 90

straints are encoded by a local phase variable that is reset at 91

the beginning of a walking step, while the desired global- 92

position trajectory is usually encoded by a global phase vari- 93

able that involves continuously and monotonically across all 94

walking steps. 95

To analyze the closed-loop stability for guiding con- 96

troller designs, the HZD approach exploits the Poincaré sec- 97

tion method to examine the asymptotic convergence of a 98

robot’s state to the desired periodic orbit representing the 99

desired gait in the state space. Recently, the HZD frame- 100

work has been extended to achieve asymptotic tracking of the 101

desired global path during 3-D underactuated bipedal walk- 102

ing [22]. Yet, an orbitally stabilizing controller cannot sta- 103

bilize a prespecified time-varying trajectory [23] such as the 104

desired global-position trajectory. 105

1.2 Related Work on Trajectory Tracking Control 106

Our previous trajectory tracking controller designs ei- 107

ther focus on individual joint trajectory tracking [24, 25] or 108

only considers 2-D walking [26–28]. In particular, our pre- 109

vious work on 2-D walking, including the impact invariance 110

construction and stability analysis, is not valid for 3-D walk- 111

ing. Specifically, robot dynamics during 3-D walking are 112

nonlinearly coupled in the heading and lateral directions of 113

the robot’s global path, but 2-D walking does not exhibit lat- 114

eral motion, and accordingly, the coupling is trivial. This 115

nonlinear coupling significantly increases the complexity of 116

controller derivation in addressing 3-D walking compared 117

with 2-D walking. Furthermore, experimental validation of 118

these previous controllers has been missing. 119

Beyond the scope of global-position tracking control 120

for bipedal walking robots, trajectory tracking control of 121

general hybrid systems with state-triggered jumps is an ac- 122

tive research topic [29–34]. Lyapunov-based controller 123

design methodologies have been introduced to provably 124

achieve asymptotic trajectory tracking for linear hybrid sys- 125

tems [30, 31]. In this study, to guide the needed controller 126

design, we will extend the previous Lyapunov-based stability 127

analysis to nonlinear hybrid systems that include 3-D bipedal 128

robot walking. 129
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1.3 Contributions130

This study aims to derive and experimentally validate131

a nonlinear control approach for 3-D bipedal walking that132

achieves asymptotic global-position tracking by explicitly133

addressing the hybrid robot dynamics. The main contribu-134

tions of this study are summarized as follows:135

i) Constructing impact invariance conditions that are in-136

dependent of the desired global-position trajectory and137

yet ensure all desired trajectories respect the impact dy-138

namics. They can be used to decouple the planning of139

virtual constraints and global position, thus improving140

trajectory generation efficiency.141

ii) Establishing sufficient conditions based on the multiple142

Lyapunov stability analysis [35] of the hybrid system for143

guiding the design of a continuous state-feedback con-144

trol law to achieve asymptotic global-position tracking.145

iii) Demonstrating the global-position tracking accuracy of146

the proposed control approach both through simulations147

and, for the first time, experimentally on a 3-D bipedal148

walking robot.149

iv) Experimentally validating the inherent robustness of the150

proposed control design in addressing irregular walking151

surfaces such as moderately slippery floors.152

Some of the results presented in this paper were initially153

reported in [36] and [37]. The present paper includes sub-154

stantial, new contributions in the following aspects: a) the155

proof of the main theorem (i.e., Theorem 1) is updated with156

a new choice of Lyapunov function to properly analyze the157

convergence of the robot’s lateral foot placement during 3-D158

walking, and Proposition 4 is added along with its full proof,159

which supports the updated proof of the main theorem; b)160

fully developed proofs of all theorems and propositions are161

presented, which were missing in [36] and [37]; c) com-162

parative experimental results are added to show the reliable163

global-position tracking performance of the proposed control164

approach; and d) robustness evaluation is newly included to165

illustrate the capability of the proposed control approach in166

handling relatively slippery grounds.167

This paper is structured as follows. Section 2 describes168

the problem formulation. Section 3 explains the proposed169

continuous-phase tracking control law. Section 4 presents170

the proposed construction of conditional impact invariance171

for designing virtual constraints. Section 5 introduces the172

closed-loop stability analysis based on multiple Lyapunov173

functions. Section 6 reports the simulation and experimental174

results. Section 7 discusses the proposed approach and po-175

tential directions of future work. Proofs of all theorems and176

propositions are given in the appendix.177

2 Problem Formulation178

This section presents the proposed problem formulation179

of global-position tracking control, including dynamics mod-180

eling, tracking error definition, and control objective.181

Fig. 2. Illustration of a fully actuated gait cycle comprising a con-
tinuous phase and a discrete swing-foot landing.

2.1 Full-Order Robot Model 182

This subsection describes a full-order model that accu- 183

rately captures the dynamic behaviors of all degrees of free- 184

dom (DOFs) involved in bipedal walking. Thanks to the 185

model’s accuracy, a controller that is effective for the model 186

would also be valid for the physical robot. Hence, we use the 187

full-order model as a basis of the proposed control approach. 188

The full-order model is naturally hybrid and nonlinear, 189

because walking dynamics are inherently hybrid, involving 190

both nonlinear continuous behaviors (e.g., leg-swinging mo- 191

tions) and state-triggered discrete behaviors (e.g., the joint- 192

velocity jumps caused by foot-landing impact). 193

In this study, we assume that the swing and the stance leg 194

immediately switch roles upon a foot landing, with the new 195

swing leg beginning to move in the air and the new stance 196

leg remaining in a full, static contact with the ground until 197

the next landing occurs [13]. The assumption is valid when 198

the double-support phase is sufficiently short and when the 199

stance foot does not notably slip on the ground. 200

Under this assumption, if all of the robot’s (revolute 201

or prismatic) joints are directly actuated, then the robot is 202

fully actuated; i.e., its full DOFs can be directly commanded 203

within continuous phases. 204

This study focuses on the relatively simple gait, fully ac- 205

tuated gait, for two main reasons. First, asymptotic tracking 206

of time-varying global-position trajectories for the 3-D hy- 207

brid walking model is still an open control problem for this 208

simple gait. Second, using a simple gait allows us to focus 209

on addressing the complexity of the controller design prob- 210

lem induced by the hybrid, nonlinear robot dynamics and the 211

time-varying global-position trajectory. 212

Continuous-phase dynamics. As illustrated in Fig. 2, a 213

complete walking cycle comprises: a) a fully-actuated con- 214

tinuous phase during which one foot contacts the ground and 215

the other swings in the air and b) a landing impact. 216

Walking dynamics during continuous phases can be de- 217

scribed by usual ordinary differential equations. Lagrange’s 218

method is used to obtain the following nonlinear full-order 219

model during continuous phases [12]: 220

M(q)q̈+ c(q, q̇) = Buu, (1)

where q ∈ Q is the joint-position vector, M : Q→ Rn×n is 221

the symmetric, positive-definite inertia matrix, c : T Q→ Rn
222

is the sum of Coriolis, centrifugal, and gravitational terms, 223
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Bu ∈Rn×m is the joint-torque projection matrix with full col-224

umn rank, and u∈U is the joint-torque vector. Here, Q⊂Rn
225

is the configuration space of the robot, T Q is the tangent bun-226

dle of Q, and U ⊂Rm is the admissible joint-torque set. Note227

that m = n when a robot is fully actuated.228

Impact dynamics. When the swing foot lands on the229

ground, the swing and stance legs immediately switch their230

roles. Here we model the swing-foot landing impact as the231

contact between rigid bodies [13]. This assumption is valid232

for dynamic walking on relatively stiff surfaces (e.g., con-233

crete and ceramic floors) during which the swing foot strikes234

the surface at a relatively significant downward velocity.235

Due to the coordinate swap of the swing and stance legs236

as well as the impulsive rigid-body impact, both joint po-237

sition and velocity vectors experience a sudden jump at a238

landing event. This state-triggered jump is described by the239

following nonlinear reset map ∆∆∆q,q̇ : T Q→ T Q [12]:240

[
q+

q̇+

]
= ∆∆∆q,q̇(q−, q̇−) :=

[
∆∆∆q(q−)

∆∆∆q̇(q−)q̇−

]
, (2)

where ?− and ?+ represent the values of ? just before and241

just after the impact, respectively.242

Switching surface. A swing-foot landing event is trig-243

gered when the robot’s state reaches the switching surface244

Sq, which is given by:245

Sq := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0}, (3)

where zsw : Q→R is the swing-foot height above the ground.246

Combining the above equations yields the following247

full-order model:248


M(q)q̈+ c(q, q̇) = Buu, if (q−, q̇−) /∈ Sq;[

q+

q̇+

]
= ∆∆∆q,q̇(q−, q̇−), if (q−, q̇−) ∈ Sq.

(4)

2.2 Global-Position Tracking Error249

A fully-actuated, n-DOF bipedal robot can track n inde-250

pendent desired position trajectories, including the reference251

global-position trajectories.252

In this study, we choose to use the position of a biped’s253

base (e.g., trunk), (xb,yb,zb), to represent its global position254

in an environment. The horizontal components of the base255

position are related to the stance-foot position as:256

xb = xst + x̄b(q) and yb = yst + ȳb(q), (5)

where (xst ,yst ,0) denotes the stance-foot position with257

xst ,yst ∈ R. The scalar variables x̄b : Q → Qx ⊂ R and258

ȳb : Q→ Qy ⊂ R represent the x- and y-coordinates of the259

base position relative to the stance foot, respectively.260

In real-world locomotion tasks, a higher-level planner261

typically specifies the desired global motions as: 262

a) The center line Γd of the desired global path. 263

b) The desired smooth position trajectory sd(t) along Γd . 264

As an arbitrary curved path can be approximated as a nons- 265

mooth curve pieced together by straight lines, this study fo- 266

cuses on the tracking control of straight-line paths, which 267

could be extended to the tracking of a curved path as dis- 268

cussed in Section 7. 269

Without loss of generality, suppose that the center line
Γd coincides with the Xw-axis of the world frame; that is

Γd = {(xb,yb) ∈ R2 : yb = 0}.

Then, the global-position tracking error along Γd is defined 270

as x̄b(q)− (sd(t)− xst). 271

While sd(t) and Γd are often provided by a higher-level 272

path planner, the desired base motion in the direction lateral 273

to Γd remains to be designed, which is explained next. 274

2.3 Virtual-Constraint Tracking Error 275

Besides the desired global-position trajectory sd(t), a 276

legged robot typically has multiple directly actuated DOFs 277

that can track additional desired motions. We choose to use 278

virtual constraints to define the desired trajectories for the 279

lateral base position yb and the remaining control variables 280

φφφ c : Q→ Qc ⊂ Rn−2. 281

Analogous to the HZD framework, we use virtual con-
straints to represent the desired configuration relative to a
phase variable θ : Q→ Q f ⊂ R. Without loss of generality,
the phase variable θ is chosen as the relative forward position
of the base, x̄b(q); that is,

θ = x̄b(q).

The virtual constraints can be encoded by θ as: 282

[
ȳb(q)
φφφ c(q)

]
−
[

yd(θ(q))− yst
φφφ d(θ(q))

]
= 0, (6)

where the scalar function yd : Q f → R and the vector φφφ d : 283

Q f → Rn−2 are the desired trajectories of yb and φφφ c, respec- 284

tively. Suppose that yd , φφφ d , φφφ c and θ are all continuously 285

differentiable in their respective arguments. 286

Thus, the tracking error corresponding to the virtual 287

constraints is defined as
[

ȳb(q)
φφφ c(q)

]
−
[

yd(θ(q))− yst
φφφ d(θ(q))

]
. 288

2.4 Control Objective 289

The tracking errors can be compactly expressed as: 290

h(t,q) = hc(q)−hd(t,q), (7)
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Fig. 3. Block diagram of the proposed continuous-phase controller.

where the control variables hc and their desired trajectories291

hd are respectively defined as hc :=
[
x̄b, ȳb,φφφ

T
c
]T and hd :=292 [

sd− xst ,yd− yst ,φφφ
T
d
]T .293

The control objective is to asymptotically drive the294

tracking error h to zero for achieving asymptotic tracking295

of the desired motions, which are the desired global-position296

trajectory sd(t) and the desired functions yd and φφφ d that de-297

fine the virtual constraints, for 3-D bipedal robot walking.298

To achieve this objective, the proposed control approach299

(Fig. 1) comprises three main components: a) continuous-300

phase controller design (for stabilizing the desired trajecto-301

ries within continuous phases); b) impact invariance con-302

struction (for satisfying a necessary condition of asymptotic303

tracking for the hybrid model); and c) closed-loop stabil-304

ity analysis (for providing sufficient stability conditions that305

guide the controller design).306

3 Continuous-Phase Control307

This section presents a continuous state-feedback con-308

trol law that asymptotically stabilizes the desired trajectories309

within continuous phases.310

We choose to design a controller that directly regulates311

the continuous-phase walking dynamics instead of the im-312

pact dynamics because the impact dynamics cannot be di-313

rectly commanded due to its infinitesimal short duration. We314

will show in Section 5 how the proposed continuous control315

law could be tuned to indirectly stabilize the desired trajec-316

tories for the overall hybrid system.317

The proposed control law (Fig. 3) is synthesized based318

on the full-order model of bipedal walking dynamics.319

Analogous to the HZD framework, we utilize the input-320

output linearization technique [23] to linearize the nonlin-321

ear continuous-phase dynamics in Eq. (1) into a linear map,322

which allows us to exploit the well-studied linear system the-323

ory to design the needed controller for the continuous phase.324

With the trajectory tracking error h chosen as the out-325

put function y (i.e., y = h), a continuous-phase control law326

synthesized via input-output linearization is given by:327

u = (JhM−1B)−1(v+ ∂h
∂q M−1c− ∂ 2h

∂ t2 − ∂

∂q (
∂h
∂q q̇)q̇) (8)

with Jh(q) := ∂h
∂q (q), which yields the linearized dynamics328

ÿ = v. Note that the variables φφφ c, yd , and φφφ d can be chosen329

such that there exists an open subset Q̃ of the configuration330

space Q on which the Jacobian matrix Jh(q) is invertible. 331

Then, the matrix JhM−1B is invertible on q ∈ Q̃. 332

Choosing v as a proportional-derivative (PD) term 333

v =−KPy−KDẏ, (9)

where the proportional gain matrix KP ∈ Rn×n and the 334

derivative gain matrix KD ∈ Rn×n are both positive-definite 335

diagonal matrices, the linear closed-loop dynamics of the 336

output function becomes ÿ+KDẏ+KPy = 0 during contin- 337

uous phases. 338

Define the state of the output function dynamics as x := 339[
yT , ẏT ]T ∈ R2n. Then, the closed-loop error equation can 340

be compactly expressed as: 341

{
ẋ = Ax, if (t−,x−) /∈ S;
x+ = ∆∆∆(t−,x−), if (t−,x−) ∈ S.

(10)

Here, A :=
[

0 I
−KP −KD

]
with 0 a zero matrix and I an 342

identity matrix with appropriate dimensions. S and ∆∆∆ are 343

the switching surface and impact map associated with the 344

closed-loop dynamics, respectively. Note that ∆∆∆ is explicitly 345

time-dependent because of the explicit time dependence of 346

h. The expressions of S and ∆∆∆ can be obtained from their 347

counterparts in the open-loop dynamics (Eq. (3)) as well as 348

the output function definition (Eq. (7)). 349

The origin (i.e., x = 0) of the continuous-phase closed- 350

loop dynamics (i.e., ẋ = Ax) will be asymptotically stable if 351

the PD gains are chosen such that A is Hurwitz [23]. Then, 352

there exist positive numbers c1, c2, and c3 and a Lyapunov 353

function candidate V (x) such that 354

c1‖x‖2 ≤V (x)≤ c2‖x‖2 and V̇ (x)≤−c3‖x‖2 (11)

hold for all x within continuous phases. These inequalities 355

indicates that V (x) exponentially converges at the rate of c3
c2

356

within a continuous phase. 357

While the proposed control law with properly chosen 358

PD gains guarantees the asymptotic tracking of the desired 359

trajectories within continuous phases, the impact dynamics 360

(i.e., x+ = ∆∆∆(t,x−)) remain uncontrolled, and thus the sta- 361

bility of the hybrid closed-loop system is not yet ensured. To 362

satisfy a necessary condition of asymptotic trajectory stabi- 363

lization in the presence of uncontrolled impact dynamics, we 364

introduce impact invariance construction next. 365

4 Impact Invariance Construction for Virtual Con- 366

straint Design 367

This section presents the proposed construction of im- 368

pact invariance conditions that can be incorporated in the tra- 369

jectory generation of the desired functions yd and φφφ d , which 370

define the virtual constraints, for ensuring all desired trajec- 371
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tories (i.e., yd and φφφ d as well as sd) respect the impact dy-372

namics.373

4.1 Impact Invariance374

The concept of impact invariance was first introduced375

within the HZD framework, along with a systematic method376

of impact invariance construction (see Theorem 4 in [13]).377

The concept was later on termed as “impact invariance” [14].378

Definition 1. (Impact invariance condition) The output379

function y and its first derivative ẏ are impact-invariant if380

the following condition is met: y+ = 0 and ẏ+ = 0 hold just381

after an impact if y− = 0 and ẏ− = 0 hold just before an382

impact [13, 14].383

For the proposed feedback controller to achieve asymp-384

totic tracking for hybrid dynamical systems, the output func-385

tion state y and ẏ need to satisfy the impact invariance con-386

dition at the steady state. Suppose that the impact invari-387

ance condition is not met at the steady state. Then, because388

the robot’s impact dynamics cannot be directly regulated, the389

output function state may become nonzero just after an im-390

pact even if it is zero just before the impact, which means391

asymptotic tracking cannot be achieved.392

Since the impact invariance condition is placed on the393

output function state, we can satisfy it by properly planning394

the desired function hd . As the desired global position sd395

is often supplied by a higher-level path planner without im-396

pact dynamics considered, the generation of the remaining397

desired functions yd and φφφ d , which define the virtual con-398

straints, needs to ensure the impact agreement for all trajec-399

tories (i.e., sd , yd , and φφφ d).400

The proposed impact invariance construction comprises401

two steps. We first extend the existing method (i.e., The-402

orem 4 in [13]) to derive conditions that ensure the impact403

invariance of the output function state associated with the404

virtual constraints, that is, (ȳb − (yd − yst), φφφ c − φφφ d) and405

its first derivative (Section 4.3). Built upon this condition,406

we introduce a new, additional condition that guarantees the407

impact invariance of the global-position error state, that is,408

x̄b−(sd−xst) and its first derivative (Section 4.4). Both con-409

ditions are placed on the virtual constraints alone.410

4.2 Impact Timings411

Because the desired global-position trajectory sd is ex-412

plicitly time-varying, we need to consider the impact timings413

in the proposed impact invariance construction. As the actual414

and desired impact timings generally do not coincide due to415

the state-triggered nature of a foot-landing event [9], they are416

individually defined as follows.417

Definition 2. (Actual and desired impact timings) Let Tk418

be the timing of the kth (k∈Z+) actual landing impact, which419

is defined as the timing of the first intersection between the420

state x and the switching surface S on t > T+
k−1. Without421

loss of generality, define T0 = 0. Let τk denote the kth de-422

sired impact timing, which is defined as the timing of the first423

Fig. 4. Illustration of the impact timings of actual walking steps.
The actual kth walking step begins at t = T+

k−1 and ends at t = T−k .

The actual kth swing-foot landing occurs at t = T−k .

intersection between x and S on t > T+
k−1 assuming x = 0 424

∀t > T+
k−1. 425

The precise definition of Tk is given in [13]. Fig- 426

ure 4 shows an illustration of Tk. The variables ?(T−k−1) and 427

?(T+
k−1) are respectively denoted as ?|−k−1 and ?|+k−1 in the 428

rest of the paper where brevity is preferred. 429

4.3 Impact Invariance for Virtual Constraints 430

The proposed impact invariance construction utilizes the 431

uniqueness of the robot’s joint position q∗ just before an im- 432

pact event when the virtual constraints in Eq. (12) are exactly 433

satisfied [13]. 434

The joint position q∗ is mathematically defined as the 435

solution to the following equations 436

F(q) :=

ȳb(q)− (yd(θ(q))− yst)
φφφ c(q)−φφφ d(θ(q))

zsw(q)

= 0 (12)

on S∩ Q̃. Note that the last equation in Eq. (12) holds be- 437

cause the swing-foot height zsw(q) reaches 0 at a touchdown. 438

Due to the nonlinearity of the function F(q), Eq. (12) 439

may have multiple solutions on S∩ Q̃. Suppose that the out- 440

put function is designed such that ∂F
∂q (q

∗) is invertible on 441

S∩ Q̃. Then by the implicit function theorem, there exits 442

Q̄⊂ Q̃ such that q∗ is a unique solution to F(q) = 0 on S∩ Q̄. 443

We are now ready to introduce the condition that ensures 444

the impact invariance of the output function state associated 445

with the virtual constraints. 446

Proposition 1. (Impact invariance conditions for virtual 447

constraints) Suppose that the desired functions yd and φφφ d 448

are planned to meet the following conditions: 449

(A1) ȳb(q0) = yd(θ0)− ystd and φφφ c(q0) = φφφ d(θ0). 450

(A2)

[
∂ ȳb
∂q ȳb(q0)
∂φφφ c
∂q (q0)

]
∆∆∆q̇(q∗)J−1

h (q∗)

 1
∂yd
∂θ

(θ ∗)
∂φφφd
∂θ

(θ ∗)


=

[
∂yd
∂θ

(θ0)
∂φφφd
∂θ

(θ0)

]
∂ x̄b

∂q
(q0).

451

Here, q0 := ∆∆∆q(q∗), θ0 := x̄b(q0), and θ ∗ := θ(q∗). The 452

scalar ystd is the y-coordinate of the desired foot placement. 453

Then, under the lateral foot-placement condition yst = ystd , 454

impact invariance holds for the output function state associ- 455

ated with the virtual constraints. 456
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4.4 Impact Invariance for Global-Position Tracking Er-457

ror458

As the desired global-position trajectory sd is often459

supplied by a high-level planner without impact dynamics460

considered, we construct an additional condition, which is461

placed on the virtual constraints, to ensure the impact invari-462

ance of the global-position error state, i.e., x̄b−(sd−xst) and463

its first derivative. Note that x̄b− (sd− xst)≡ xb− sd .464

The key to the proposed construction is to exploit the465

property of sd that it is commonly planned as a smooth func-466

tion for any t > T0. Thanks to this property, the impact invari-467

ance of the output function xb−sd is always guaranteed; that468

is, xb− sd = 0 automatically holds just after an impact if it469

holds just before the impact. This is because both the forward470

base position xb and its desired trajectory sd are continuous471

across an impact event.472

We choose to ensure the impact invariance of ẋb − ṡd473

by enforcing the continuity of ẋb across the planned impact474

event. The rationale of this design choice is threefold. First,475

given the continuity of ṡd for any t > T0, the continuity of ẋb476

across the planned impact event guarantees the continuity of477

ẋb− ṡd , which then ensures that ẋb− ṡd = 0 holds just after478

the planned impact if it holds just before the impact. Second,479

the continuity of ẋb is equivalent to that of ˙̄xb because the480

stance foot does not move (i.e., ẋst = 0). Third, ˙̄xb is a func-481

tion of the joint position q and velocity q̇ only, and thus its482

continuity across the planned impact event can be satisfied483

through virtual constraint design alone without explicitly re-484

lying on the profile of sd .485

The proposed impact invariance condition for ẋb− ṡd is486

summarized as follows.487

Proposition 2. (Impact invariance condition for global-488

position error) Suppose that the desired functions yd and φφφ d489

satisfy conditions (A1) and (A2) and the following condition:490

(A3) dx̄b
dq (q0)∆∆∆q̇(q∗)J−1

h (q∗)

 1
dyd
dθ

(θ ∗)
dφφφd
dθ

(θ ∗)

= 1.491

Then, under the lateral foot-placement condition yst = ystd ,492

impact invariance of the global-position error state holds.493

If the virtual constraints are generated to meet the con-494

ditions in Propositions 1 and 2, then under the lateral foot-495

placement condition yst = ystd , the impact invariance of the496

full output function state holds; that is, if x(τ−k ) = 0 then497

x(τ+k ) = ∆∆∆(τ−k ,0) = 0.498

Remark 1. (Independence from desired global-position499

trajectory) Propositions 1 and 2 indicate that the satisfac-500

tion of the impact invariance conditions only relies on the501

design of the virtual constraints but not the arbitrary global-502

position trajectory sd provided by a higher-level planner. For503

this reason, the design of virtual constraints does not need to504

explicitly consider sd and thus can be performed offline even505

when the higher-level planner updates sd online, which could506

reduce the computational load for online planning.507

Remark 2. (Ensuring the desired lateral foot placement 508

through controller design) Note that the foot-placement 509

condition yst = ystd underlying the proposed impact invari- 510

ance construction is only assumed in the virtual constraint 511

planning but not the controller design. Indeed, Section 5 in- 512

troduces sufficient conditions under which the proposed con- 513

troller guarantees this foot-placement condition holds at the 514

actual steady state. 515

5 Stability Analysis 516

This section introduces Lyapunov-based stability analy- 517

sis of the hybrid, nonlinear, time-varying closed-loop error 518

dynamics (Eq. (10)) under the proposed continuous-phase 519

control law (Eqs. (8) and (9)). The outcome of this stability 520

analysis is a set of sufficient conditions under which the pro- 521

posed control law provably realizes asymptotic stabilization 522

of the desired global position trajectory sd and the desired 523

functions yd and φφφ d for the overall hybrid system. 524

5.1 Boundedness of Foot Placement and Impact Timing 525

Before presenting the main theorem on closed-loop sta- 526

bility, we first introduce the boundedness of the impact tim- 527

ing Tk and the lateral stance-foot position yst . The bounded- 528

ness of the impact timing is needed in the stability analysis 529

to derive how much a Lyapunov function converges within a 530

continuous phase. The boundedness of yst also needs to be 531

explicitly considered, because yst = ystd underlies the pro- 532

posed impact invariance conditions and should hold at the 533

actual steady state for achieving asymptotic tracking. 534

Proposition 3. (Boundedness of impact timing error) Let 535

x̃(t; t0,λ0) be a solution of a fictitious continuous-time system 536

˙̃x = Ax̃ with the initial condition x̃(t0) = λ0, ∀t > t0. There 537

exists a positive number r1 and a Lipschitz constant LTx such 538

that the difference between the actual and planned impact 539

timings is bounded above in norm as 540

|Tk− τk| ≤ LTx‖x̃(τk;T+
k−1,x|

+
k−1)‖ (13)

for any x|+0 ∈Br1(0) := {x∈R2n : ‖x‖≤ r1} and any k∈Z+. 541

Proposition 4. (Boundedness of lateral foot-placement 542

error) Suppose that the lateral swing-foot position ysw is cho- 543

sen as an element of φφφ c and is thus directly controlled. Then, 544

there exist positive numbers βst and d1 such that the foot- 545

placement error after the kth swing-foot landing is bounded 546

above in norm as 547

|yst |+k − ystd | ≤ ‖x|−k ‖+βst‖x̃(τk;T+
k−1,x|

+
k−1)‖ (14)

for any x|+0 ∈Bd1(0) := {x∈R2n : ‖x‖≤ d1} and any k∈Z+. 548

549

Rationale of proofs. The full proofs of Propositions 3 and 4
are given in the appendix. The proof of Proposition 3 utilizes
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the implicit dependence of the actual impact timing Tk on the
error state x. The proof of Proposition 4 mainly relies on
the fact that the stance-foot position within the current step
is the end position of the swing foot within the previous step.
By including ysw as a control variable, we can then relate the
lateral foot-placement error yst − ystd to the error state x. �

5.2 Main Theorem550

If the virtual constraints are designed to satisfy the im-551

pact invariance conditions in Propositions 1 and 2 and if the552

continuous-phase convergence rate of x is sufficiently fast,553

then the origin of the hybrid closed-loop error system is554

asymptotically stable, as summarized in the main theorem:555

Theorem 1. (Closed-loop stability conditions) Suppose556

that the virtual constraints satisfy the impact invariance con-557

ditions (A1)-(A3). Also, suppose that the PD gains in Eq. (9)558

are chosen such that A is Hurwitz and that the continuous-559

phase convergence rate of x is sufficiently fast. Then, there560

exists a positive number d2 such that for any x|+0 ∈ Bd2(0) :=561

{x ∈ R2n : ‖x‖ ≤ d2}, the origin of the closed-loop error562

system in Eq. (10) is locally asymptotically stable; that is,563

x(t)→ 0 as t→ ∞.564

Furthermore, both the lateral foot placement and actual565

impact timing asymptotically converge to their desired val-566

ues; that is, Tk− τk→ 0 and yst − ystd → 0 as k→ ∞.567

Rationale of proof. The full proof of Theorem 1 is given in568

the appendix. The proof utilizes the stability theory of the569

multiple Lyapunov functions [35], which prescribes how a570

Lyapunov function candidate should evolve in order for the571

origin of a hybrid dynamical system to be stable.572

The stability analysis begins with the construction of573

the Lyapunov function candidate. Since the lateral foot-574

placement error yst − ystd is not explicitly included in the575

state x but directly affects the satisfaction of the impact in-576

variance condition and thus the system stability, we choose577

to construct the Lyapunov function Va by augmenting V with578

a positive-definite function of the foot-placement error:579

Va(x,yst − ystd) :=V (x)+σ(yst − ystd)
2, (15)

where σ is a positive number to be specified in the proof.580

Next, we analyze the evolution of Va during a continuous581

phase as well as through a hybrid transition. The last step is582

to derive the sufficient closed-loop stability conditions that583

the continuous-phase convergence rate should meet such that584

the divergence of Va caused by the uncontrolled impact is585

compensated by the continuous-phase convergence.586

The convergence of the foot placement yst and impact
timing Tk is proved based on Propositions 3 and 4 and the
asymptotic convergence of the error state x. By Proposi-
tions 3 and 4, the deviations of the lateral foot placement
and impact timing are bounded above by the norms of the
actual state x and the fictitious state x̃. Note that by defi-
nition, x̃ overlaps with x within the given actual continuous

phase. Thus, driving x to zero will indirectly make x̃ dimin-
ish, which then eliminates the deviations yst−ystd and Tk−τk
at the actual steady state. �

Remark 3. (Tuning continuous-phase convergence rate)
By Theorem 1, the continuous-phase convergence rate of x
(or equivalently, Va) needs to be sufficiently fast for guaran-
teeing asymptotic trajectory tracking of the hybrid closed-
loop system. The continuous-phase convergence rate of Va
solely depends on that of V , because the stance foot is static
during a continuous phase and |yst − ystd | remains constant.
We can construct V as V = xT Px, where P is the solution to
the Lyapunov equation [23]

PA+AT P =−Q.

Here, Q is any symmetric, positive-definite matrix satisfying 587

0 < λQI ≤ Q with a positive number λQ. For simplicity, we 588

can choose Q as an identity matrix, and then λQ can be any 589

number satisfying 0 < λQ ≤ 1. Then, the bounds of V and V̇ 590

in Eq. (11) become c1 = λmin(P), c2 = λmax(P), and c3 = λQ, 591

where λmin(P) and λmax(P) are the smallest and the largest 592

eigenvalues of P, respectively. Thus, the exponential conver- 593

gence rate of V becomes c3
c2

=
λQ

λmax(P) . Note that the value 594

of the matrix P depends on the PD gains, and thus λmax(P) 595

can be adjusted by tuning those gains. The full proof (Sec- 596

tion 9.5) provides greater details about PD gain tuning. It 597

also provides an explicit expression of the lower bound of 598

the convergence rate c3
c2

for guaranteeing asymptotic error 599

convergence of the hybrid closed-loop system. 600

Remark 4. (Satisfying lateral foot-placement condition) 601

Theorem 1 indicates that the lateral foot-placement condi- 602

tion underlying the proposed impact invariance construc- 603

tion in Propositions 1 and 2 is exactly met at the steady 604

state. Thus, the impact invariance of x, which is the nec- 605

essary condition for asymptotic trajectory tracking, is in- 606

deed satisfied at the steady state; that is, if x(τ−k )→ 0 then 607

x(τ+k ) = ∆∆∆(τk,0)→ 0 as k→ ∞. 608

6 Simulations and Experiments 609

This section reports simulation and experimental results 610

that demonstrate the global-position tracking performance of 611

the proposed control approach. 612

The hardware platform used for controller validation is 613

the OP3 bipedal humanoid robot developed by ROBOTIS 614

(Fig. 1). OP3 weighs 3.5 kg, and its height is 0.51 m. It 615

has twenty revolute joints comprising eight upper-body and 616

twelve leg joints. Because OP3’s twenty revolute joints are 617

all independently actuated, the robot is fully actuated during 618

a continuous phase. 619

6.1 Virtual Constraint Generation 620

This subsection explains the lower-level, optimization- 621

based trajectory generation of virtual constraints based on 622

the proposed impact invariance conditions. 623
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Fig. 5. Illustration of the desired gait in the sagittal plane corre-
sponding to the planned virtual constraints.

With full actuation, OP3’s twelve leg joints can be di-624

rectly commanded to track twelve independent desired tra-625

jectories, which are: 1) the desired global-position trajectory626

sd and 2) the desired functions yd and φφφ d . As a higher-level627

planner supplies the desired global path on the walking sur-628

face and the desired position trajectory along the path, the629

objective of the trajectory generation is to plan the desired630

lateral base position yd and desired function φφφ d that both de-631

fine the virtual constraints.632

Trajectory parameterization. The desired lateral base posi-633

tion yd is chosen as the following simple sinusoidal function634

to enable an oscillatory global motion about the center line635

Γd during 3-D walking:636

yd(x̄b) := α1sin(α2x̄b +α3), (16)

where ααα :=
[
α1 α2 α3

]T ∈ R3 is an unknown vector to be637

optimized.638

The desired functions φφφ d are chosen as the desired tra-639

jectories for the following ten control variables φφφ c:640

a) Height (zb) and roll, pitch, and yaw angles (ψroll
b , ψ

pitch
b ,641

ψ
yaw
b ) of the base.642

b) Position (xsw, ysw, zsw) and roll, pitch, and yaw angles643

(ψroll
sw , ψ

pitch
sw , ψ

yaw
sw ) of the swing foot.644

This choice of control variables allows direct regulation of645

the poses of the trunk and swing foot to avoid overstretched646

leg joints, enforce a relatively steady trunk posture, and647

maintain a sufficient clearance between the swing foot and648

the walking surface.649

The desired function φφφ d(θ) is parameterized using650

Bézier curves [38]:651

φφφ d(θ) :=
M

∑
k=0

ak
M!

k!(M− k)!
s(θ)k(1− s(θ))M−k, (17)

where M ∈ Z+ is the order of the Bézier curves, s(θ) :=652

Fig. 6. Flow chart of the controller implementation procedure for
hardware experiments.

θ−θ+

θ−−θ+ , ak ∈R10 is the unknown vector to be optimized, and 653

θ+ and θ− are the planned values of θ at the beginning and 654

the end of a step, respectively. 655

Optimization formulation. The optimization variables are 656

chosen as parameters ααα in Eq. (16) and ak in Eq. (17). The 657

constraints are set as: 658

(B1) The proposed impact invariance conditions (A1)-(A3) 659

in Propositions 1 and 2. 660

(B2) Feasibility constraints (e.g., joint-position limits, joint- 661

torque limits, and ground-contact constraints). 662

(B3) Gait parameters (e.g., step length and duration). 663

This list of constraints is not intended to be exhaustive as 664

this study focuses on impact invariance construction and con- 665

troller design instead of trajectory generation. MATLAB 666

command f mincon is used to solve the optimization. 667

Desired trajectories. In the simulations and experiments, 668

the center line Γd of the desired path is the Xw-axis of the 669

world reference frame, and two desired position trajectories 670

sd(t) along Γd are considered, one with a constant velocity 671

and the other with a varying velocity: 672

a) sd(t) = 4.4t−3 cm. 673

b) sd(t) = 3.1t−1.5+1.5sin(0.3t)− sin(0.8t) cm. 674

The planned virtual constraints are illustrated in Fig. 5. 675

6.2 Controller Implementation Procedure 676

This subsection explains the experimental procedure 677

that we adopt to implement the proposed controller on the 678

physical OP3 robot using the ROS package (op3 manager) 679

developed by OP3’s manufacturer. 680

Since the ROS package does not support direct access 681

to the output torques of joint motors, the proposed control 682

law in Eq. (8), which is a torque command, cannot be di- 683

rectly implemented on OP3 and needs to be adapted for its 684

implementation on the robot. 685

Considering that OP3’s ROS package allows users to 686

send desired joint-position trajectories to individual joints 687

and specify the PD gains of OP3’s default joint controller, 688

we adopt the following controller implementation proce- 689

dure [20]: a) to generate the desired position trajectories of 690
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Fig. 7. Time-lapse figures of OP3 walking in Webots simulation
(top) and hardware experiment (bottom).

individual joints, qd(t), and b) to send the desired trajecto-691

ries to the default joint-position controller. The main steps of692

this procedure are shown in Fig. 6.693

Although the adapted controller directly tracks the indi-694

vidual joint trajectories qd instead of the original Cartesian-695

space trajectories hd , the controller implementation proce-696

dure still allows satisfactory tracking of hd . This is because697

qd preserve the feasibility and desired features of hd as spec-698

ified in (B1)-(B3).699

6.3 Simulation and Experimental Setup700

MATLAB. To validate the theoretical controller design, we701

utilize MATLAB to implement the control law based on the702

full-order model of OP3 (Eq. (4)). The control gains are set703

as KP = 225 · I and KD = 30 · I to ensure the matrix A is704

Hurwitz. MATLAB simulation results are shown in Figs. 9705

and 10.706

Webots. To gain preliminary insights into the effectiveness707

of the proposed controller implementation procedure as ex-708

plained in Section 6.2, we use Webots to simulate a 3-D709

realistic biped model that closely emulates OP3’s graphi-710

cal, physical, and dynamical properties (including its lim-711

ited actuator accessibility). The control gains that the emu-712

lated robot system allows users to tune are the effective PD713

gains, whose physical meaning is different from KP and KD714

in Eq. (9). These effective gains are tuned to be “10” and “0”715

such that the resulting tracking performance is comparable716

with the MATLAB results. Figure 7 shows the time-lapse717

figures of robot walking obtained in Webots simulations and718

hardware experiments. The similarity in the walking gait in-719

dicates the validity of using Webots simulations to provide720

preliminary insights into experiments. Webots simulation re-721

sults of the adapted controller are displayed in Fig. 10.722

Experiments. The experimental setup is shown in Fig. 8.723

With this setup, the robot’s joint angles can be directly mea-724

sured by joint encoders, and its global pose (i.e., position and725

orientation) can be determined by: a) using the 4K PRO WE-726

BCAM and AprilTag [39] to obtain the stance-foot pose in727

the world reference frame and b) using the obtained stance-728

foot pose to solve for the robot’s global pose via forward729

kinematics. By providing relatively accurate measurement,730

the use of the overhead camera and AprilTag allows us to fo-731

cus on controller validation. The experiment is guided by the732

controller adaptation procedure from Section 6.2. The initial733

Fig. 8. Experimental setup. ¬: Logitech 4K PRO WEBCAM. ­:
world coordinate frame. ®: reference points for perspective transfor-
mation. ¯: AprilTag attached to OP3’s feet, which is used to deter-
mine the robot’s global pose. °: OP3 robot. ±: the center line Γd
of the desired global path.

Fig. 9. Asymptotic virtual constraint tracking in MATLAB. The func-
tions φi (i ∈ {1,2, ...10}) are elements of the desired function φφφ d .

tracking error of the desired position trajectory sd is 3 cm, 734

which is approximately 1/3 of a nominal step length. The 735

initial path tracking error is 5 cm. Similar to the gain tuning 736

in Webots, the effective PD gains are respectively tuned to be 737

“800” and “0” to ensure a relatively fast error convergence 738

without violating the actuator’s torque limit. Experiment re- 739

sults of OP3 walking on a concrete and a relatively slippery 740

ceramic floor are shown in Fig. 11. Videos of the experi- 741

ments can be accessed at https://youtu.be/VJbLMkOG xo. 742

6.4 Discussions on Validation Results 743

Tracking accuracy in simulations. The virtual-constraint 744

tracking result in Fig. 9 shows that the proposed control 745

law is capable of accurately enforcing the virtual con- 746

straints during 3-D fully actuated walking. The global- 747

position tracking results in Fig. 10 validate that the pro- 748

posed control law drives the robot to asymptotically con- 749

verge to the desired global-position trajectory sd while 750

moving along the center line Γd of the global path. In 751

particular, the accurate tracking results obtained in We- 752

bots indicate the effectiveness of the proposed controller 753
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Fig. 10. Global-position tracking results in MATLAB and Webots simulations with: (a) sd(t) = 0.044t−0.03 m and (b) xd(t) = 0.031t−
0.015+0.015sin(0.3t)−0.01sin(0.8t) m.

implementation procedure in guaranteeing reliable tra-754

jectory tracking in the presence of hardware limitations.755

Tracking accuracy in experiments. As illustrated in756

Fig. 11 (a) (top), under the proposed global-position757

tracking (GPT) controller, the robot’s actual global758

position xb (labeled as “xb (GPT)”) converges to a759

relatively small neighborhood about its desired trajec-760

tory sd within 3 seconds when the robot walks on a761

concrete floor. Also, Fig. 11 (a) (bottom) illustrates that762

despite an initial path tracking error of 5 cm, the robot763

remains close to the center line Γd of the desired global764

path, as indicated by the footstep trajectories labeled765

as “foot placement (GPT)”. Due to uncertainties such766

as hardware limitations, modeling errors, and floor767

surface irregularity, achieving an exactly zero steady-768

state tracking error on a physical robot may not be769

feasible. Thanks to the inherent robustness of feedback770

control, the proposed control approach achieves a small771

steady-state tracking error, although uncertainties are772

not explicitly addressed in the proposed theoretical773

controller design.774

Robustness. To further test the limit of the inherent robust-775

ness of the proposed control approach, experiments of776

OP3 walking on a ceramic tile floor were conducted777

(Fig. 11 (b)). As the surface of the ceramic tiles is rela-778

tively more slippery than the concrete floor, the robot’s779

stance foot slips more frequently on the tile floor, caus-780

ing a stronger violation of the modeling assumption of781

static stance foot. Yet, a relatively small global-position782

tracking error is still realized when the initial foot place-783

ment error is small, as shown in Fig. 11(b).784

Comparison with global-velocity tracking control. Re-785

sults of a global-velocity tracking (GVT) controller,786

which is analogous to the orbitally stabilizing controller 787

for 3-D fully actuated walking [20], are also displayed in 788

Figs. 11. Although the GPV controller achieves accurate 789

tracking of the desired global velocity ṡd , its global tra- 790

jectory tracking performance is not satisfactorily guar- 791

anteed, as indicated by the relatively large deviations of 792

the global position (labeled as “xb (GVT)”) and the foot- 793

step trajectories (labeled as “foot placement (GVT)”). 794

7 Discussions 795

This study has extended the previous method of im- 796

pact invariance construction from orbital stabilization to the 797

stabilization [13] of time-varying global-position trajectory 798

during 3-D walking. The proposed method produces im- 799

pact invariance conditions that can be imposed in the tra- 800

jectory generation of virtual constraints for ensuring their 801

agreement with impact dynamics. Moreover, although the 802

impact maps of the virtual constraints and global trajectory 803

are generally nonlinearly coupled through the robot’s kine- 804

matic chains, these conditions can automatically ensure any 805

arbitrary smooth desired global-position trajectory respects 806

the impact dynamics. Indeed, as shown in Fig. 10, the pro- 807

posed controller achieves asymptotic tracking of two differ- 808

ent global-position trajectories under the same virtual con- 809

straints (Fig. 5), indicating that the virtual constraints ensure 810

the impact agreement for different desired global-position 811

trajectories. Thus, the proposed impact invariance conditions 812

can allow the decoupling between the lower-level trajectory 813

generation of virtual constraints and the higher-level plan- 814

ning of global-position trajectory. The decoupling could per- 815

mit offline planning of virtual constraints, thus reducing the 816

computational burden of motion planning. 817

This study has also introduced the Lyapunov-based sta- 818

bility conditions for the hybrid closed-loop error system as- 819
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Fig. 11. Experimental results of global-position tracking with sd(t) = 0.044t−0.03 m on: (a) a concrete floor and (b) a ceramic tile floor.

sociated with 3-D walking. Controller designs satisfying820

these conditions can accurately track the time-varying de-821

sired global-position trajectory, as demonstrated in Figs. 10822

and 11. The proposed control approach can also indirectly823

drive the lateral foot placement yst to the desired location824

ystd , which is predicted by the asymptotic convergence of825

the Lyapunov function Va that explicitly contains the lateral826

foot-placement error. Note that our previous controller for827

2-D walking cannot address the convergence of yst − ystd as828

it does not consider the robot’s lateral movement. The ca-829

pability of accurate foot placement could potentially be ex-830

ploited to handle locomotion on discrete terrains (e.g., step-831

ping stones [40]).832

Uncertainties such as modeling errors and terrain irregu-833

larities are prevalent during real-world robot operations [41].834

The proposed control approach achieves a small final track-835

ing error when the uncertainties (e.g., walking surface irreg-836

ularities) are relatively small, as demonstrated by the experi-837

ment results in Fig. 11. However, if the uncertainties are sig-838

nificant, the controller may not guarantee a reliable tracking839

performance because it does not explicitly deal with uncer-840

tainties. One potential approach to improve robustness is to841

integrate the proposed control law with adaptive and robust842

control [42,43] for enabling online model estimation and bet-843

ter disturbance rejection.844

Real-world applications of legged robots commonly re-845

quire walking in varying directions. To apply and extend846

the proposed approach from straight-line to curved-path lo-847

comotion, the impact invariance construction method can be848

directly incorporated in virtual constraint planning to ensure849

impact agreement. Also, to allow efficient planning, we can850

construct a library [19] of virtual constraints offline that cor-851

respond to a common range of direction-varying gait param-852

eters, and interpolate the virtual constraints online to fit the853

varying walking directions during curved-path navigation.854

8 Conclusions 855

This paper has introduced a control approach that ex- 856

plicitly addresses the hybrid robot dynamics for achieving 857

asymptotic global-position tracking during fully actuated 3- 858

D bipedal walking. With the output function designed as 859

the tracking error of the desired global-position trajectory 860

and virtual constraints, a continuous input-output lineariz- 861

ing control law was synthesized to asymptotically drive the 862

output function to zero within continuous phases. The con- 863

struction of impact invariance conditions was introduced to 864

inform the generation of virtual constraints such that the 865

robot’s desired motions defined by the virtual constraints and 866

the desired global-position trajectory all respect the discrete 867

landing impact dynamics. Sufficient conditions were derived 868

based on Lyapunov theory under which the proposed contin- 869

uous control law provably guarantees the asymptotic track- 870

ing performance of the hybrid closed-loop system. Simu- 871

lation and experimental results demonstrated the effective- 872

ness of the proposed control approach in realizing satisfac- 873

tory global-position tracking during 3-D walking. 874
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[5] Hürmüzlü, Y., and Moskowitz, G. D., 1986. “The role894

of impact in the stability of bipedal locomotion”. Dyn.895

Stability Syst., 1(3), pp. 217–234.896

[6] Bhounsule, P. A., Zamani, A., and Pusey, J., 2018.897

“Switching between limit cycles in a model of run-898

ning using exponentially stabilizing discrete control899

lyapunov function”. In Proc. Amer. Contr. Conf.,900

pp. 3714–3719.901

[7] Yeatman, M., Lv, G., and Gregg, R. D., 2019. “De-902

centralized passivity-based control with a generalized903

energy storage function for robust biped locomotion”.904

ASME J. Dyn. Syst., Meas., Contr., 141(10).905

[8] Gu, Y., Yao, B., and Lee, C., 2017. “Time-dependent906

orbital stabilization of underactuated bipedal walking”.907

In Proc. Amer. Contr. Conf., pp. 4858–4863.908

[9] Rijnen, M., Biemond, J. B., van de Wouw, N., Sac-909

con, A., and Nijmeijer, H., 2019. “Hybrid systems with910

state-triggered jumps: Sensitivity-based stability analy-911

sis with application to trajectory tracking”. IEEE Trans.912

Automat. Contr., 65(11), pp. 4568–4583.913

[10] Rijnen, M., Chen, H. L., van de Wouw, N., Saccon,914

A., and Nijmeijer, H., 2019. “Sensitivity analysis for915

trajectories of nonsmooth mechanical systems with si-916

multaneous impacts: A hybrid systems perspective”. In917

Proc. Amer. Contr. Conf., pp. 3623–3629.918

[11] Wang, Y., Dehio, N., Tanguy, A., and Khed-919

dar, A., 2020. “Impact-aware task-space920

quadratic-programming control”. arXiv preprint921

arXiv:2006.01987.922

[12] Grizzle, J., Abba, G., and Plestan, P., 2001. “Asymp-923

totically stable walking for biped robots: Analysis via924

systems with impulse effects”. IEEE Trans. Automat.925

Contr., 46(1), pp. 51–64.926

[13] Westervelt, E. R., Grizzle, J. W., and Koditschek, D. E.,927

2003. “Hybrid zero dynamics of planar biped walkers”.928

IEEE Trans. Automat. Contr., 48(1), pp. 42–56.929

[14] Morris, B., and Grizzle, J. W., 2009. “Hybrid invariant930

manifolds in systems with impulse effects with appli-931

cation to periodic locomotion in bipedal robots”. IEEE932

Trans. Automat. Contr., 54(8), pp. 1751–1764.933

[15] Martin, A. E., and Gregg, R. D., 2015. “Hybrid invari-934

ance and stability of a feedback linearizing controller935

for powered prostheses”. In Proc. Amer. Contr. Conf.,936

pp. 4670–4676.937

[16] Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O.,938

Huang, J.-K., and Grizzle, J., 2019. “Feedback control939

of a Cassie bipedal robot: Walking, standing, and rid-940

ing a segway”. In Proc. Amer. Contr. Conf., pp. 4559–941

4566.942

[17] Fevre, M., Goodwine, B., and Schmiedeler, J. P., 2019.943

“Terrain-blind walking of planar underactuated bipeds944

via velocity decomposition-enhanced control”. Int. J.945

Robot. Res., 38(10-11), pp. 1307–1323.946

[18] Hamed, K. A., and Grizzle, J. W., 2014. “Event-based 947

stabilization of periodic orbits for underactuated 3-D 948

bipedal robots with left-right symmetry”. IEEE Trans. 949

Robot., 30(2), pp. 365–381. 950

[19] Da, X., Harib, O., Hartley, R., Griffin, B., and Grizzle, 951

J. W., 2016. “From 2D design of underactuated bipedal 952

gaits to 3D implementation: Walking with speed track- 953

ing”. IEEE Access, 4, pp. 3469–3478. 954

[20] Ames, A. D., Cousineau, E. A., and Powell, M. J., 955

2012. “Dynamically stable bipedal robotic walking 956

with NAO via human-inspired hybrid zero dynamics”. 957

In Proc. ACM Int. Conf. Hybrid Syst.: Comput. Con- 958

trol, pp. 135–144. 959

[21] Hamed, K., Safaee, B., and Gregg, R. D., 2019. “Dy- 960

namic output controllers for exponential stabilization 961

of periodic orbits for multidomain hybrid models of 962

robotic locomotion”. ASME J. Dyn. Syst., Meas., 963

Contr., 141(12). 964

[22] Xiong, X., Reher, J., and Ames, A., 2020. “Global po- 965

sition control on underactuated bipedal robots: Step-to- 966

step dynamics approximation for step planning”. arXiv 967

preprint arXiv:2011.06050. 968

[23] Khalil, H. K., 1996. Nonlinear control. Prentice Hall. 969

[24] Gu, Y., and Yuan, C., 2020. “Adaptive robust trajec- 970

tory tracking control of fully actuated bipedal robotic 971

walking”. In Proc. IEEE/ASME Int. Conf. Adv. Intel. 972

Mechatron., pp. 1310–1315. 973

[25] Gu, Y., and Yuan, C., 2021. “Adaptive robust tracking 974

control for hybrid models of three-dimensional bipedal 975

robotic walking under uncertainties”. ASME J. Dyn. 976

Syst., Meas., Contr., 143(8), p. 081007. 977

[26] Gu, Y., Yao, B., and Lee, C. S. G., 2016. “Bipedal gait 978

recharacterization and walking encoding generalization 979

for stable dynamic walking”. In Proc. IEEE Int. Conf. 980

Robot. Automat., pp. 1788–1793. 981

[27] Gu, Y., Yao, B., and Lee, C. S. G., 2018. “Exponen- 982

tial stabilization of fully actuated planar bipedal robotic 983

walking with global position tracking capabilities”. J. 984

Dyn. Syst. Meas. Contr., 140(5), p. 051008. 985

[28] Gao, Y., and Gu, Y., 2019. “Global-position track- 986

ing control of multi-domain planar bipedal robotic 987

walking”. In Proc. ASME Dyn. Syst. Contr. Conf., 988

Vol. 59148, p. V001T03A009. 989

[29] Menini, L., and Tornambè, A., 2001. “Asymptotic 990
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9 Appendix: Proofs of All Propositions and Theorems1050

9.1 Proof of Proposition 11051

With the pre-impact joint position q∗, the post-impact1052

joint position and phase variable are q(τ+k ) = ∆∆∆q(q∗) = q01053

and θ(τ+k ) = x̄b(q(τ+k )) = x̄b(q0) = θ0, respectively.1054

Under the foot-placement condition yst = ystd and condi-1055

tion (A1), the post-impact value of the output function ȳb−1056

(yd − yst) is ȳb(q0)− yd(θ0)+ yst(τ
+
k ) = ȳb(q0)− yd(θ0)+1057

ystd = 0. Similarly, given condition (A1), the post-impact1058

value of φφφ c− φφφ d is φφφ c(q0)− φφφ d(θ0) = 0. Thus, the impact1059

invariance of the output functions ȳb−(yd−yst) and φφφ c−φφφ d1060

is ensured. 1061

Since ẏ(τ−k ) = 0, we have 1062

ẏ(τ−k ) = ḣc(q∗, q̇(τ−k ))− ḣd(t,θ ∗, θ̇(τ−k ))

= Jhc(q
∗)q̇(τ−k )−

 ṡd(τ
−
k )

∂yd
∂θ

(θ ∗)θ̇(τ−k )
∂φφφd
∂θ

(θ ∗)θ̇(τ−k )

= 0
(18)

and θ̇(τ−k ) = ∂ x̄b
∂q (q

∗)q̇(τ−k ) = ṡd(τ
−
k )− ẋst(τ

−
k ) = ṡd(τ

−
k ), 1063

where Jhc(q∗) := ∂hc
∂q (q∗). Thus, the pre-impact joint ve- 1064

locity is: 1065

q̇(τ−k ) = J−1
hc
(q∗)

 1
∂yd
∂θ

(θ ∗)
∂φφφd
∂θ

(θ ∗)

 θ̇(τ−k ). (19)

Note that q̇(τ+k )=∆∆∆q̇(q∗)q̇(τ−k ) and θ̇(τ+k )= ∂ x̄b
∂q (q0)q̇(τ+k ). 1066

Then, by condition (A2), the post-impact value 1067

of
[

˙̄yb− (ẏd− ẏst)
φ̇φφ c− φ̇φφ d

]
becomes

[
∂ ȳb
∂q (q0)

∂φφφ c
∂q (q0)

]
q̇(τ+k ) − 1068[

∂yd
∂θ

(θ0)
∂φφφd
∂θ

(θ0)

]
θ̇(τ+k ) = 0; that is, the impact invariance of 1069[

˙̄yb− (ẏd− ẏst)
φ̇φφ c− φ̇φφ d

]
is met. 1070

9.2 Proof of Proposition 2 1071

Because xb and sd(t) are both continuous in t, we obtain

x̄b(q0)−sd(τ
+
k )+xst = xb(τ

+
k )−sd(τ

+
k ) = xb(τ

−
k )−sd(τ

−
k ).

Thus, if xb(τ
−
k )−sd(τ

−
k ) = 0, then x̄b(q0)−sd(τ

+
k )+xst = 0; 1072

that is, the impact invariance of xb− sd automatically holds. 1073

Because the stance foot remains static just before and 1074

after the impact, ẋst(τ
+
k ) = ẋst(τ

−
k ) = 0 holds. Also, as 1075

the desired global velocity ṡd is continuous in t, we have 1076

ṡd(τ
+
k ) = ṡd(τ

−
k ). 1077

From the proof of Proposition 1, we have 1078

θ̇(τ+k ) =
∂ x̄b

∂q
(q0)∆∆∆q̇(q∗)J−1

h (q∗)

 1
∂yd
∂θ

(θ ∗)
∂φφφd
∂θ

(θ ∗)

 θ̇(τ−k ),

(20)
which yields θ̇(τ+k ) = θ̇(τ−k ) under condition (A3). Then, 1079

the post-impact value of the first derivative of the output 1080

function xb− sd becomes ˙̄xb(q0, q̇(τ+k ))− (ṡd(τ
+
k )− ẋ+st ) = 1081

θ̇(τ+k )− ṡd(τ
+
k )+ ẋ+st = θ̇(τ−k )− ṡd(τ

−
k )+ ẋ−st , which is zero 1082

if θ̇(τ−k )− ṡd(τ
−
k )+ ẋ−st = 0. Thus, the impact invariance of 1083

the global-position tracking error state holds. 1084
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9.3 Proof of Proposition 31085

Because the output function state y and ẏ and the swing-1086

foot height zsw defining the switching surface S are both1087

continuously differentiable in their respective arguments, the1088

function defining the switching surface Sx is continuously1089

differentiable in its argument [27]. Also, note that the1090

continuous-phase vector field (i.e., Ax) of the error state x1091

is continuously differentiable in x.1092

Then, by Lemma 2.1 and Corollary 2.4 in [27], the im-1093

pact timing Tk is an implicit function of the state x, and is1094

Lipschitz continuous with respect to x. Thus, there exists1095

a positive number r1 and a Lipschitz constant LTx such that1096

|Tk− τk| ≤ LTx‖x̃(τk;T+
k−1,x|

+
k−1)‖ for any x|+0 ∈ Br1(0) and1097

any k ∈ Z+.1098

9.4 Proof of Proposition 41099

Let φsw,y(θ) denote the desired trajectory of the control1100

variable ysw. Because the stance-foot position during the (k+1101

1)th step is the swing-foot position at the end of the kth step,1102

one has yst |+k = ysw|−k and φsw,y(θ
∗) = ystd .1103

Let θ̃(t;T+
k−1,x|

+
k−1) be the phase variable associated1104

with the fictitious state x̃(t;T+
k−1,x|

+
k−1) that overlaps with the1105

actual state x on t ∈ [T+
k−1,T

−
k ]. Then, by the triangular in-1106

equality, we can approximate the upper bound of the absolute1107

lateral foot-placement error as1108

|yst |+k − ystd |= |ysw|−k −φsw,y(θ
∗)|

≤ |ysw|−k −φsw,y(θ(T−k ))|
+ |φsw,y(θ(T−k ))−φsw,y(θ̃(τk;T+

k−1,x|
+
k−1))|

+ |φsw,y(θ̃(τk;T+
k−1,x|

+
k−1))−φsw,y(θ

∗)|.

(21)

The upper bounds of the three terms on the right-hand side1109

of this inequality are derived next.1110

As ysw− φsw,y is an element of the full error state x, its1111

norm satisfies1112

|ysw|−k −φsw,y(θ(T−k ))| ≤ ‖x|−k ‖. (22)

Becauseθ(T−k ) = θ̃(T−k ;T+
k−1,x|

+
k−1) and because1113

φsw,y(θ) and θ̃(t;T+
k−1,x|

+
k−1) are continuously differentiable1114

in θ and t, respectively, there exists a positive number r2 and1115

Lipschitz constants Lφsw,y and Lθt such that1116

‖φsw,y(θ(T−k ))−φsw,y(θ̃(τk;T+
k−1,x|

+
k−1))‖

≤ Lφsw,y‖θ(T−k )− θ̃(τk;T+
k−1,x|

+
k−1)‖

= Lφsw,y‖θ̃(T−k ;T+
k−1,x|

+
k−1)− θ̃(τk;T+

k−1,x|
+
k−1)‖

≤ Lφsw,yLθt |Tk− τk|

(23)

for any x|+0 ∈ Br2(0) := {x ∈ R2n : ‖x‖ ≤ r2}.1117

With θ ∗ = θ(q∗) = θ̃(τ−k ;T+
k−1,0) = sd(τ

−
k )− xst(τ

−
k ),1118

we have 1119

|θ̃(τk;T+
k−1,x|

+
k−1)−θ

∗|
= ‖θ̃(τk;T+

k−1,x|
+
k−1)− (sd(τ

−
k )− xst(τ

−
k ))‖

≤ ‖x̃(τk;T+
k−1,x|

+
k−1)‖.

(24)

Then, 1120

|φsw,y(θ̃(τk;T+
k−1,x|

+
k−1))−φsw,y(θ

∗)|
≤Lφsw,y‖θ̃(τk;T+

k−1,x|
+
k−1)−θ

∗‖ ≤ Lφsw,y‖x̃(τk;T+
k−1,x|

+
k−1)‖.

(25)
Let βst := Lφsw,y(Lθt LTx + 1) and d1 := min(r1,r2). From 1121

Proposition 3 and Eqs. (21)-(25), we obtain |yst |+k − ystd | ≤ 1122

‖x|−k ‖+βst‖x̃(τk;T+
k−1,x|

+
k−1)‖ for any x|+0 ∈ Bd1(0) and k ∈ 1123

Z+. 1124

9.5 Proof of Theorem 1 1125

To simplify the stability analysis using the proposed 1126

conditional impact invariance, which holds when yst = ystd , 1127

we will explicitly analyze the convergence of yst to ystd . An 1128

augmented Lyapunov function candidate is then constructed 1129

as Va(x,yst−ystd) :=V (x)+σ(yst−ystd)
2, where σ is a pos- 1130

itive number to be specified later. 1131

By the stability theory based on the construction of mul- 1132

tiple Lyapunov functions [35], the origin of the hybrid time- 1133

varying system in Eq. (10) is locally asymptotically sta- 1134

ble if there exists a positive number d2 such that for any 1135

x|+0 ∈ Bd2(0), Va is monotonically decreasing within each 1136

continuous phase and {Va|+1 ,Va|+2 ,Va|+3 ...} is a strictly de- 1137

creasing sequence with Va|+k → 0 as k→ ∞. 1138

Evolution of Va during continuous phases. With the PD 1139

gains chosen such that A is Hurwitz, Eq. (11) gives V |−k ≤ 1140

e−
c3
c2
(Tk+1−Tk)V |+k−1 within the kth (k ∈Z+) continuous phase. 1141

Since yst − ystd remains constant within the step due to the 1142

static stance foot, Va monotonically decreases within the kth
1143

phase. 1144

Evolution of Va across nonlinear impact maps. Consider 1145

the foot-landing event at the end of the kth walking step (i.e., 1146

t = T−k ). The tracking error expansion across the landing 1147

event is analyzed as follows. 1148

Because the desired functions yd and φφφ d(θ) satisfy the 1149

conditions (B1)-(B3), the impact invariance of the error state 1150

x holds, which leads to ∆∆∆(τ−k ,0,ystd) = 0. Then, the value of 1151

x just after the landing can be approximated by applying the 1152

triangular inequality as: 1153

‖x|+k ‖= ‖∆∆∆(T
−

k ,x|−k ,yst |−k )‖
= ‖∆∆∆(T−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,0,ystd)‖
≤ ‖∆∆∆(T−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,x|−k ,yst |−k )‖
+‖∆∆∆(τ−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,0,yst |−k )‖
+‖∆∆∆(τ−k ,0,yst |−k )−∆∆∆(τ−k ,0,ystd)‖+‖∆∆∆(τ−k ,0,ystd)‖.

(26)
As the reset map ∆∆∆(t,x,yst) is continuously differentiable in 1154
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t, x, and yst , there exists a positive number r3 and Lipschitz1155

constants L∆t , L∆x , and L∆st such that the following inequali-1156

ties hold for any x|+0 ∈ Br3(0):1157

‖∆∆∆(T−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,x|−k ,yst |−k )‖ ≤ L∆t |Tk− τk|.
‖∆∆∆(τ−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,0,yst |−k )‖ ≤ L∆x‖x|

−
k ‖.

‖∆∆∆(τ−k ,0,yst |−k )−∆∆∆(τ−k ,0,ystd)‖ ≤ L∆st |yst |−k − ystd |.
(27)

From Eqs. (13) and (27), we obtain1158

‖∆∆∆(T−k ,x|−k ,yst |−k )−∆∆∆(τ−k ,x|−k ,yst |−k )‖
≤ L∆t LTx‖x̃(τk;T+

k−1,x|
+
k−1)‖

(28)

for any x|+0 ∈ Bd2(0), where d2 = min{d1,r3}. From1159

Eqs. (26) - (28), we have for any x|+0 ∈ Bd2(0),1160

‖x|+k ‖= ‖∆∆∆(T
−

k ,x|−k ,yst |−k )‖
≤ L∆x‖x|

−
k ‖+L∆t LTx‖x̃(τk;T+

k−1,x|
+
k−1)‖+L∆st |yst |−k − ystd |.

(29)
The upper bounds of ‖x|−k ‖ and ‖x̃(τk;T+

k−1,x|
+
k−1)‖ with re-1161

spect to the tracking error norm ‖x|−k−1‖ can be derived based1162

on Eq. (11) as:1163

‖x|−k ‖ ≤
√

c2
c1

e−
c3
2c2

(Tk−Tk−1)‖x|+k−1‖ and

‖x̃(τk;T+
k−1,x|

+
k−1)‖ ≤

√
c2
c1

e−
c3
2c2

(τk−Tk−1)‖x|+k−1‖.
(30)

Then, from Eqs. (29) and (30), the post-impact error norm1164

can be approximated as:1165

‖x|+k ‖ ≤
√

c2
c1
(L∆t LTx +L∆x e−

c3
2c2

(Tk−τk))e−
c3

2c2
(τk−Tk−1)‖x|+k−1‖

+L∆st |yst |−k − ystd |.
(31)

For any ε > 0 there exist PD gains corresponding to a suf-1166

ficiently high convergence rate c3
2c2

such that e−
c3

2c2
(Tk−τk) ≤1167

1+ε. Then, the approximation of the post-impact error norm1168

can be simplified into1169

‖x|+k ‖ ≤ αx‖x|+k−1‖+αst |yst |−k − ystd |, (32)

where αx :=
√

c2
c1
(L∆t LTx +L∆x(1+ε))e−

c3
2c2

∆τk , ∆τk := τk−1170

Tk−1, and αst := L∆st .1171

Now, we derive the upper bound of |yst |−k −ystd | with re-1172

spect to the tracking error norm ‖x|−k−1‖. Because the stance1173

foot remains static within a step, we have yst |−k = yst |+k−1.1174

Then, from Eq. (14),1175

|yst |+k − ystd | ≤ ‖x|−k ‖+βst‖x̃(τk;T+
k−1,x|

+
k−1)‖ ≤ γx‖x|+k−1‖

(33)

holds, where γx :=
√

c2
c1
(βst +(1+ ε))e−

c3
2c2

∆τk . 1176

Finally, combining Eqs. (11), (32), and (33) provides
the following approximation of the post-impact value of the
Lyapunov function Va:

Va|+k =V |+k +σ(yst |+k − ystd)
2 ≤ c2‖x|+k ‖

2 +σ(yst |+k − ystd)
2

≤ B(c1‖x|+k−1‖
2 +σ(yst |+k−1− ystd)

2)

≤ B(V |+k−1 +σ(yst |+k−1− ystd)
2)≤ BVa|+k−1,

where B := max( 2c2α2
x +σγ2

x
c1

, 2c2αst
σ

). 1177

Evolution of Va for the hybrid model. If the PD gains and 1178

σ are chosen such that 1179

2c2α2
x +σγ2

x
c1

< 1 and 2c2αst
σ

< 1 (34)

hold (i.e., B < 1), then for any x|+0 ∈ Bd2(0), the sequence 1180

{Va|+1 ,Va|+2 , Va|+3 ...} is strictly decreasing with Va|+k → 0 1181

as k → ∞. Thus, the closed-loop hybrid system is locally 1182

asymptotically stable if the PD gains ensure that the matrix 1183

A is Hurwitz and that Eq. (34) holds for any x|+0 ∈ Bd2(0). 1184

To meet the two inequality conditions in Eq. (34), we 1185

can choose the function V (x) to be V (x) = xT Px as ex- 1186

plained in Remark 3. This choice results in the continuous- 1187

phase convergence rate of V (x) as c3
c2
=

λQ
λmax(P) , which can be 1188

tuned with the PD gains. Specifically, to satisfy the second 1189

inequality in Eq. (34), we can specify σ as any positive num- 1190

ber such that σ > 2λmax(P)αst , where αst can be estimated 1191

from system dynamics. For instance, we can choose σ to 1192

be 2kσ λmax(P)αst with any constant kσ > 1. Then, we can 1193

tune the PD gains to meet the first inequality in Eq. (34), by 1194

allowing a sufficiently high continuous-phase convergence 1195

rate that leads to sufficiently small values of αx and γx for 1196

satisfying α2
x + γ2

x ≤
c1

2λmax(P)max(1,kσ αst )
. 1197

Convergence of impact timings. When the state x reaches 1198

zero at the steady state, from Eq. (30), the fictitious state 1199

satisfies ‖x̃(τk;T+
k−1,x|

+
k−1)‖ ≤

√
c2
c1

e−
c3
2c2

(τk−Tk−1)‖x|+k−1‖→ 1200

0 as k → ∞. Then, by Eq. (13), |Tk − τk| ≤ 1201

LTx‖x̃(τk;T+
k−1,x|

+
k−1)‖ → 0 as k → ∞; that is, Tk → τk as 1202

k→ ∞. 1203

Convergence of lateral foot placement. By the definition 1204

of Va in Eq. (15), Va(x,yst − ystd) := V (x)+σ(yst − ystd)
2, 1205

where σ is positive and V (x) and (yst−ystd)
2 are all bounded 1206

and nonnegative. Thus, if Va → 0 as t → ∞, then (yst − 1207

ystd)
2→ 0 as t→ ∞; that is, yst → ystd as t→ ∞. 1208
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